Numerical Integration with Problem-Based Learning: Theory, Exercises, and Engineering Applications

Authors

Carlos Andrés Tamayo Benjumea, Universidad Popular del Cesar, Cesar, Colombia; Juan Guillermo Calderón Acosta, Universidad Popular del Cesar, Cesar, Colombia; Lizeth Badillo Durán, Universidad Popular del Cesar, Cesar, Colombia; José Javier Coronel Casadiego, Universidad Popular del Cesar, Cesar, Colombia; Carlos Andrés Tamayo Benjumea, Universidad Popular del Cesar, Seccional Aguachica, Cesar, Colombia; Juan Guillermo Calderón Acosta, Universidad Popular del Cesar, Seccional Aguachica, Cesar, Colombia; Lizeth Badillo Durán, Universidad Popular del Cesar, Seccional Aguachica, Cesar, Colombia; José Javier Coronel Casadiego, Universidad Popular del Cesar, Seccional Aguachica, Cesar, Colombia

Keywords:

Problem-Based Learning, Engineering Education, Numerical Integration, Applied Mathematics, Numerical Methods, Python

Synopsis

The book Numerical Integration with Problem-Based Learning proposes an innovative and meaningful approach to classical numerical integration methods within the engineering context. Through a balanced combination of theory, practice, and contextualization, the book allows the reader to understand not only the formulas and algorithms that underpin integration, but also their application in solving real-life problems in the professional environment.

The text progressively develops the fundamental integration methods—the Trapezium Rule, Simpson 1/3, Simpson 3/8, and Romberg—presenting for each the theoretical foundations, deductions, advantages, limitations, and carefully designed examples using the Problem-Based Learning (PBL) methodology. This structure encourages autonomy, critical reasoning, and the application of knowledge in interdisciplinary contexts.

In this sense, the book integrates complementary digital resources, such as interactive Python notebooks and methodological guides, which expand the learning experience through computational experimentation. With a practical and pedagogical approach, the book becomes an essential support tool for students and teachers of engineering, applied sciences, and related fields interested in strengthening their analytical and technological skills.

This book is an invitation to connect mathematics with reality, promoting active, reflective learning that is consistent with the challenges of contemporary higher education.

In this scenario, being literate doesn't just mean reading or writing. Literacy, in the digital environment, has expanded: it now also involves using technological tools and judiciously understanding the information circulating in virtual environments. Digital competence has become one of those key, essential skills that allow people to navigate a world where everything is connected, or at least almost everything. Education, work, civic life: everything is touched by the digital world.

Despite these advances, the digital divide remains. It is a problem not only measured by the lack of access to devices or networks. It is also—and perhaps above all—a question of knowledge, of skills that many people have not been able to acquire. And this, in the end, deepens existing inequalities: economic, social, and educational.

This book aims to examine this entire landscape closely. It presents a detailed analysis of how digital literacy has evolved, why it is so important, and what effects it has had on different fields. Based on a review of academic studies, theoretical models such as DigComp and TPACK, and concrete experiences such as Uruguay's Plan Ceibal, it offers a broad overview. The intention is clear: to better understand how to develop digital skills and reduce the barriers that still impede access to technology.

Eleven chapters address central topics. It analyzes how digital literacy is applied in education, how it impacts the workplace, and what its role is in developing critical citizens who can make informed decisions within a digital society. It also proposes ideas for strengthening digital education in schools, promoting inclusive public policies, and developing skills that will help people find jobs in today's global economy, which waits for no one.

This book is aimed at a wide range of people: teachers, researchers, educational policymakers, institutional leaders, and anyone interested in the changes brought about by the digital transformation. It offers a combination of theory, concrete data, and practical proposals. All with a common goal: to bridge the digital divide and harness the real potential that technology has to improve our societies.

Chapters

Author Biographies

Carlos Andrés Tamayo Benjumea, Universidad Popular del Cesar, Cesar, Colombia

Docente en la Universidad Popular del Cesar
Ingeniero de Sistemas, Especialista en Inteligencia Artificial
ctamayo@unicesar.edu.co
https://orcid.org/0009-0001-1808-8974

Juan Guillermo Calderón Acosta, Universidad Popular del Cesar, Cesar, Colombia

Docente en la Universidad Popular del Cesar
Contador Público
Especialista en Auditoría Externa y Revisoría Fiscal
juancalderonacosta@unicesar.edu.co
https://orcid.org/0009-0009-9921-3455

Lizeth Badillo Durán, Universidad Popular del Cesar, Cesar, Colombia

Directora del Departamento de Sistemas e Informática, Universidad Popular del Cesar

Ingeniera de Sistemas Especialista en Aplicación de TIC para la Enseñanza Especialista en Gerencia de Riesgos Laborales y SST Auditora en ISO 9001, 45001 y 14001. Magíster en Tecnologías Digitales Aplicadas a la Educación PhD en Ciencia, Tecnología e Innovación

lizethbadilloduran@gmail.com

https://orcid.org/0009-0004-2169-8556

José Javier Coronel Casadiego, Universidad Popular del Cesar, Cesar, Colombia

Docente Catedrático Nivel Asociado – Universidad Popular del Cesar
Ingeniero de Sistemas
Especialista en Pedagogía para el Desarrollo del Aprendizaje Autónomo
josecoronel@unicesar.edu.co
https://orcid.org/0000-0003-3841-8245

References

Burden, R. L., & Faires, J. D. (2002). Numerical Analysis (7a ed.). Brooks/Cole.

Burden, R. L., & Faires, J. D. (2011). Numerical Analysis (9a ed.). Brooks/Cole.

Chapra, S. C., & Canale, R. P. (2002). Numerical Methods for Engineers: With Software and Programming Applications (7a ed.). McGraw-Hill.

Díaz Barriga, F. (2005). Enseñanza situada: vínculo entre la escuela y la vida. McGraw-Hill.

Gutiérrez Robles, J. A., Olmos Gómez, M. A., & Casillas González, J. M. (2010). Análisis numérico. McGraw-Hill Interamericana.

Infante del Río, J. A., & Rey Cabezas, J. M. (2018). Métodos numéricos: Teoría, problemas y prácticas con MATLAB (5a ed.). Ediciones Pirámide.

Izar Landeta, J. M. (2018). Métodos numéricos: con simulaciones y aplicaciones (1.ª ed.). Alfaomega Grupo Editor.

Morales Bueno, P., & Landa Fitzgerald, V. (2004). Aprendizaje basado en problemas. Theoria, 13(1), 145–157. https://www.redalyc.org/pdf/299/29901314.pdf.

Tamayo Benjumea, C. A. (2025). Anexos digitales del libro Integración numérica con ABP [Repositorio en GitHub]. Recuperado de https://github.com/carlosandrestamayo/anexos-libro-integracion-numerica-ABP.

Published

October 14, 2025

Categories

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: PDF

PDF

ISBN-13 (15)

978-628-97230-0-7

How to Cite

Tamayo Benjumea, C. A., Calderón Acosta, J. G., Badillo Durán, L., & Coronel Casadiego, J. J. (2025). Numerical Integration with Problem-Based Learning: Theory, Exercises, and Engineering Applications. Editorial PLAGCIS. https://doi.org/10.62486/978-628-97230-0-7